Reversible Haptotropic Shift in Zirconocene-Hexapentaene Complexes
 Noriyuki Suzuki, ${ }^{* \dagger}$ Daisuke Hashizume, ${ }^{\dagger}$ Hajime Yoshida, ${ }^{\ddagger}$ Meguru Tezuka, ${ }^{\ddagger}$ Keisuke Ida, ${ }^{\S}$ Sayoko Nagashima, ${ }^{\S}$ and Teiji Chihara ${ }^{\dagger, \S}$
 Advanced Technology Support Division, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan, Department of Applied Chemistry, Graduate School of Engineering, Saitama Institute of Technology, Fukaya, Saitama 369-0293, Japan, and Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-Ku, Saitama City, Saitama 338-8570, Japan

Received October 1, 2008; E-mail: nsuzuki@riken.jp

Haptotropic shift in organometallic species of π-ligands has been extensively studied in cyclic polyenes, such as cyclopentadienyl, indenyl, and anthracenyl ligands. ${ }^{1}$ A reversible haptotropic shift has been applied for molecular switches. ${ }^{1 a}$ Fewer studies have been carried out for linear polyenes and polyynes. ${ }^{2}$ For example, the "chain walk" of a metal atom along conjugated polyynes by $\eta^{2}-1$ η^{4}-haptotropic shift was reported, although only one of the η^{2} - or η^{4}-species was detected. ${ }^{3}$ We recently reported that $1,2,3$-butatrienes react with group 4 metallocenes to form 1-metallacyclopent-3-ynes, five-membered cycloalkynes. ${ }^{4}$ On the other hand, many examples of η^{2} - π-coordinated [n]cumulene $(n \geq 3)$ complexes are known. ${ }^{5}$ Haptotropic interconversion between these two types of cumulene complexes, however, has not been reported. Rosenthal and coworkers suggested the possibility of η^{2}-butatriene complexes $\mathbf{2}$ as intermediates in the insertion reactions of isocyanide into 1 -zir-conacyclopent-3-ynes $\mathbf{1},{ }^{6}$ although these species $\mathbf{2}$ were not detected (Scheme 1). Herein we report on zirconocene-hexapentaene complexes that show haptotropic behavior.
We previously reported the synthesis of a 1-zirconacyclopent3 -yne compound of 2,5 -bisalkylidene moieties 5a from $\mathrm{Cp}_{2} \mathrm{Zr}$ $\left(\mathrm{PMe}_{3}\right)_{2}$ and hexapentaene $4 \mathbf{a}^{7}\left(\mathrm{R}=4\right.$-ethylphenyl). ${ }^{8}$ In this study, we found that the reaction of $1,1,6,6$-tetrakis(tert-butyl)-1,2,3,4,5hexapentaene ($\mathbf{4 b}$), ${ }^{9}$ under similar conditions, afforded the phos-phine-coordinated $\eta^{2}-\pi$-complex $\mathbf{6 b}(92 \%)$ selectively, instead of the 1-zirconacyclopent-3-yne 5b (Scheme 2). ${ }^{10,11}$ Prolonged stirring did not result in the formation of $\mathbf{5 b}$. Complex $\mathbf{6 b}$ was also prepared from low-valent zirconocene species generated by $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and $\mathbf{M g}$ in the presence of PMe_{3}. Note that $\mathbf{5 b}$ could be prepared from $\mathbf{4 b}$ and $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{Mg}$ in the absence of $\mathrm{PMe}_{3}(76 \%)$.

Treatment of $\mathbf{5 b}$ with an excess of trimethylphosphine in benzene- d_{6} afforded $\mathbf{6 b}$ in 73% yield (Scheme 3). On the other hand, addition of triethylborane to $\mathbf{6 b}$ afforded $\mathbf{5 b}(60 \%)$. This is the first example of haptotropic interconversion between an η^{2} cumulene complex and a 1-metallacyclopent-3-yne. ${ }^{12}$ The molecular structures of both $\mathbf{5 b}$ and $\mathbf{6 b}$ were unequivocally determined (Figure 1).

These molecular structures show that the ligand is rotated perpendicularly during the interconversion between $\mathbf{5 b}$ and $\mathbf{6 b}$. Bond lengths and angles around the $\mathrm{Zr}, \mathrm{C} 3$, and C 4 atoms in $\mathbf{6 b}$ resemble those in zirconium-alkene complexes. ${ }^{13}$ It is noteworthy that the distances $\mathrm{Zr}-\mathrm{C} 3$ in $\mathbf{5 b}$ and $\mathrm{Zr}-\mathrm{C} 3, \mathrm{Zr}-\mathrm{C} 4$ in $\mathbf{6 b}$ are in the same range.

These findings lead us to reexamine the reaction of $\mathbf{4 a} \cdot{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR observation at $-40{ }^{\circ} \mathrm{C}$ revealed that, in the beginning of the reaction (1 h), the $\eta^{2}-\pi$-complexes $\mathbf{6 a}$ and $\mathbf{6} \mathbf{a}^{\prime}$ were formed in

[^0]Scheme 1. Insertion of Isocyanide into 1-Zirconacyclopent-3-ynes

Scheme 2. Reactions of Hexapentaenes and $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{PMe}_{3}\right)_{2}$

Scheme 3. Reversible Haptotropic Conversion in 5b and $\mathbf{6} \mathbf{b}^{\boldsymbol{a}}$

${ }^{a}$ (i) In $\mathrm{C}_{6} \mathrm{D}_{6}, 20$ equiv of $\mathrm{PMe}_{3}, \mathrm{rt}, 20 \mathrm{~h}, 73 \%$; (ii) in $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{BEt}_{3}, \mathrm{rt}, 1 \mathrm{~h}$, 60%.

Figure 1. Molecular structures of $\mathbf{5 b}$ (left) and $\mathbf{6 b}$ (right). Drawn with 50% probability. H-atoms are omitted. Selected bond lengths (\AA) and angles (deg): 5b, $\mathrm{Zr}-\mathrm{C} 2$ 2.393(2), $\mathrm{Zr}-\mathrm{C} 3$ 2.307(2), C2-C3 1.390(3), C3-C3* 1.258(2), C2-Zr-C2* 100.3(1), $\mathrm{Zr}-\mathrm{C} 2-\mathrm{C} 3$ 69.4(1), C2-C3-C3* 150.3(2); 6b, $\mathrm{Zr}-\mathrm{P} 2.6916(7), \mathrm{Zr}-\mathrm{C} 32.305(2), \mathrm{Zr}-\mathrm{C} 4$ 2.246(2), C1-C2 1.326(3), C2-C3 1.303(3), C3-C4 1.445(3), C4-C5 1.303(3), C5-C6 1.318(3), C1-C2-C3 174.6(2), C2-C3-C4 128.5(2), C3-C4-C5 131.6(2), C4-C5-C6 178.3(2).
50% and 26% yield, respectively, accompanied by a small amount of $\mathbf{5 a}(4 \%)$ (Scheme 4). Two $\mathrm{Cp}^{1} \mathrm{H}$ NMR doublets were observed at 5.39 and 5.29 ppm in toluene- d_{8}, and these coalesced at $20^{\circ} \mathrm{C}$. They disappeared with time and $\mathbf{5 a}$ formed quantitatively in 4 days.

Scheme 4. Formation of η^{2}-Complexes of 4a

Scheme 5. Insertion of tert-Butylisocyanide and the Molecular Structure of 9

This indicates that $\mathbf{6 a}$ and $\mathbf{6} \mathbf{a}^{\prime}$ were in equilibrium in solution and that they released PMe_{3} to transform into 5a. The equilibrium probably proceeded by "ligand sliding", not via 5a. ${ }^{14}$ Complexes $\mathbf{6 a}$ and 6a' were identified by using ${ }^{13} \mathrm{C}$-enriched products. To our surprise, 5a remained unreacted by the addition of PMe_{3} and so did complex $1\left(\mathrm{Cp}^{\prime}=\mathrm{C}_{5} \mathrm{H}_{5}\right)$. These facts indicate that the equilibrium lies toward the right in $\left(\mathbf{5 b}+\mathrm{PMe}_{3}\right) / \mathbf{6 b}$ (Scheme 3), while it lies far toward the left in $\left(\mathbf{5 a}+\mathrm{PMe}_{3}\right) / \mathbf{6 a}$ and in $(\mathbf{1}+$ $\left.\mathrm{PMe}_{3}\right) / \mathbf{2}$. This is probably due to the steric demand of tert-butyl groups.

Complexes $\mathbf{5 b}$ and $\mathbf{6 b}$ reacted with 2 equiv of tert-butylisocyanide (7) at rt to give the inserted product $\mathbf{8}$ in good yields, although 5a did not give any inserted products even at $80^{\circ} \mathrm{C} .{ }^{15,16}$ It was interesting that the η^{2}-complex isocyanide adduct 9 was formed during the reaction of $\mathbf{6 b}$ with 7 (Scheme 5). The molecular structure of 9 was unambiguously characterized. ${ }^{17}$ Treatment of 9 with 1 equiv of $\mathbf{7}$ gave $\mathbf{8}$ in 42% yield.

The reaction of $\mathbf{5 b}$ and 2 equiv of $\mathbf{7}$ was observed in ${ }^{1} \mathrm{H}$ NMR spectra. Formation of 9 (24\%) and 8 (29\%) was observed after 3 h . Complex $\mathbf{8}$ increased as the amount of $\mathbf{9}$ decreased, reaching 82% in 18 h . These results clearly indicate that a ligand-induced haptotropic shift from $\mathbf{5 b}$ to $\mathbf{9}$ was the first step in the insertion of isocyanides.

Acknowledgment. This study was financially supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant-in-Aid for Scientific Research, C: No. 18550065), Japan Interaction in Science and Technology Forum, and SORST program (JST). The authors thank Ms. K. Yamada for assistance in elemental analysis.

Supporting Information Available: Preparation and spectroscopic data for $\mathbf{4 - 6}, \mathbf{8}$, and $\mathbf{9}$; the reactions of $\mathbf{5 b}$ and $\mathbf{6 b}$ with $\mathbf{7}$; details on X-ray diffraction studies on $\mathbf{5 b}, \mathbf{6 b}, \mathbf{8}$, and $\mathbf{9}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) For recent reviews: (a) Dötz, K. H.; Jahr, H. C. Chem. Rec. 2004, 4, 6171. (b) Oprunenko, Y. F. Russ. Chem. Rev. 2000, 69, 683-704.
(2) (a) Silvestre, J.; Albright, T. A. Nouv. J. Chim. 1985, 9, 659-668. (b) Murahashi, T.; Nagai, T.; Nakashima, H.; Tomiyasu, S.; Kurosawa, H. Chem. Lett. 2006, 35, 754-755. (c) Bleeke, J. R.; Donaldson, A. J. Organometallics 1986, 5, 2401-2405. (d) King, J. A., Jr.; Vollhardt, K. P. C. J. Organomet. Chem. 1989, 369, 245-251. (e) Takahashi, Y.; Tsutsumi, K.; Nakagai, Y.; Morimoto, T.; Kakiuchi, K.; Ogoshi, S.; Kurosawa, H. Organometallics 2008, 27, 276-280.
(3) (a) Pellny, P.-M.; Burlakov, V. V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U. J. Am. Chem. Soc. 2000, 122, 6317-6318. (b) Choukroun, R.; Donnadieu, B.; Lorber, C.; Pellny, P.-M.; Baumann, W.; Rosenthal, U. Chem.-Eur. J. 2000, 6, 4505-4509.
(4) (a) Suzuki, N.; Nishiura, M.; Wakatsuki, Y. Science 2002, 295, 660-663. (b) Suzuki, N.; Aihara, N.; Takahara, H.; Watanabe, T.; Iwasaki, M.; Saburi, M.; Hashizume, D.; Chihara, T. J. Am. Chem. Soc. 2004, 126, 60-61.
(5) (a) Nakamura, A.; Kim, P.-J.; Hagihara, N. J. Organomet. Chem. 1965, 3, 7-15. (b) Bright, D.; Mills, O. S. J. Chem. Soc., Dalton Trans. 1972, 24652469. (c) Schubert, U.; Grönen, J. Chem. Ber. 1989, 122, 1237-1245. (d) Stang, P. J.; White, M. R.; Maas, G. Organometallics 1983, 2, 720-725. (e) Werner, H.; Laubender, M.; Wiedemann, R.; Windmüller, B. Angew. Chem., Int. Ed. Engl. 1996, 35, 1237-1239. (f) van Loon, J.-D.; Seiler, P.; Diederich, F. Angew. Chem., Int. Ed. Engl. 1993, 32, 1187-1189. (g) Fischer, R. A.; Fischer, R. W.; Herrmann, W. A.; Herdweck, E. Chem. Ber. 1989, 122, 2035-2040. (h) King, R. B.; Harmon, C. A. J. Organomet. Chem. 1975, 88, 93-100. (i) Iyoda, M.; Kuwatani, Y.; Oda, M. J. Chem. Soc., Chem. Commun. 1992, 399-400. (j) Zimniak, A.; Bakalarski, G. J. Organomet. Chem. 2001, 634, 198-208. (k) Song, L.; Arif, A. M.; Stang, P. J. J. Organomet. Chem. 1990, 395, 219-226.
(6) Bach, M. A.; Beweries, T.; Burlakov, V. V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U. Organometallics 2007, 26, 4592-4597.,
(7) Suzuki, N.; Hashizume, D.; Chihara, T. Acta Crystallogr., Sect. E 2007, E63, o3436.
(8) Suzuki, N.; Hashizume, D.; Koshino, H.; Chihara, T. Angew. Chem., Int. Ed. 2008, 47, 5198-5202.
(9) Kuwatani, Y.; Yamamoto, G.; Oda, M.; Iyoda, M. Bull. Chem. Soc. Jpn. 2005, 78, 2188-2208.
(10) Zirconocene-cyclohexa-1,2,3-triene complexes have been reported: Yin, J.; Abboud, K. A.; Jones, W. M. J. Am. Chem. Soc. 1993, 115, 8859-8860.
(11) 6b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.92\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=6.9 \mathrm{~Hz}, 9 \mathrm{H}\right), 1.43(\mathrm{~s}, 18 \mathrm{H}), 1.57$ $(\mathrm{s}, 18 \mathrm{H}), 5.45\left(\mathrm{~d},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=1.8 \mathrm{~Hz}, 10 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 16.77(\mathrm{~d}, J=$ 17.3 Hz), $34.00,34.25,36.03$ (q), 36.65 (q), $97.38(J=23.0 \mathrm{~Hz}), 102.99$, $103.32(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 109.68,112.59,195.66,200.95$. IR (neat, ATR): $2948,2906,1870,1355,1208,791 \mathrm{~cm}^{-1}$. Anal. calcd for $\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{PZr}$: C, 70.30; H, 9.27. Found: C, 70.06; H, 9.32. Crystallographic data: $\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{PZr}$, $\mathrm{FW}=598.01, P 2_{1} 2_{1} 2_{1}(\# 19), a=8.306(2), b=18.527(5), c=21.323(5)$ $\AA, V=3281.4(14) \AA^{3}, 90 \mathrm{~K}, Z=4, R_{1}=0.043, w R($ all data $)=0.052$ (CCDC-699032).
(12) For a related work on polyyne-complexes, see: Burlakov, V. V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U. Organometallics 2004, 23, 5188-5192.
(13) (a) Takahashi, T.; Murakami, M.; Kunishige, M.; Saburi, M.; Uchida, Y.; Kozawa, K.; Uchida, T.; Swanson, D. R.; Negishi, E. Chem. Lett. 1989, 761-764. (b) Binger, P.; Müller, P.; Benn, R.; Rufínska, A.; Gabor, B.; Krüger, C.; Betz, P. Chem. Ber. 1989, 122, 1035-1042.
(14) This type of "ligand-sliding" isomerization in cumulene complexes has been reported on Rh and Pt ; see refs 5 e and 5 k .
(15) Double insertion of isocyanide into $\mathrm{Zr}-\mathrm{C}$ and $\mathrm{Ti}-\mathrm{C}$ bond; see: (a) Ramakrishna, T. V. V.; Lushnikova, S.; Sharp, P. R. Organometallics 2002, 12, 5685-5687. (b) Fisher, R. A.; Buchwald, S. L. Organometallics 1990, 9, 871-873. (c) Thorn, M. G.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1999, 18, 4442-4447.
(16) Measurement of X-ray diffraction data of $\mathbf{8}$ was carried out at SPring-8 (BL26B1). Ueno, G.; Kanda, H.; Hirose, R.; Ida, K.; Kumasaka, T.; Yamamoto, M. J. Struct. Funct. Genomics 2006, 7, 15-22. 8: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.35(\mathrm{~s}, 18 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}), 5.63(\mathrm{~s}, 5 \mathrm{H})$, $5.92(\mathrm{~s}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 32.86,32.92,33.19,36.84$ (q), 37.19 (q), $57.86(\mathrm{~N} \equiv C), 104.44,109.11(\mathrm{Cp} \times 2), 109.90(\mathrm{q}), 120.20(\mathrm{q})$, 127.44 (q), 189.38 (q). IR (ATR, neat): 2958, 2908, 1480, 1459, 1360, 1204, 1021, $787 \mathrm{~cm}^{-1}$. Anal. calcd for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{Zr}$: C, $73.30 ; \mathrm{H}, 9.371 ; \mathrm{N}$, 4.07. Found: C, 73.11 ; H, 9.44 ; N, 3.98 (CCDC-699033).
(17) 9: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}), 1.57(\mathrm{~s}, 18 \mathrm{H})$, $5.60(\mathrm{~s}, 10 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{Me} \mathrm{S}_{4} \mathrm{Si}\right): \delta 30.26,34.10,34.12,35.95$ (q), 36.61 (q), 56.70 (q), $97.55,98.36,102.81$ (Cp), 109.62, 112.05, 189.36 (CN), 196.13, 198.05. IR (ATR, neat): 2946, 2861, 2175, 1891, 1476, 1355, 1208, 1177, 1011, $787 \mathrm{~cm}^{-1}$. Anal. calcd for $\mathrm{C}_{37} \mathrm{H}_{55} \mathrm{NZr}: \mathrm{C}, 73.45 ; \mathrm{H}, 9.16$; N, 2.31. Found: C, 73.20; H, 9.34; N, 2.14 (CCDC-699034).
JA8077472

[^0]: ${ }^{+}$RIKEN.

 * Saitama Institute of Technology.
 § Saitama University.

